The expression [tex](4z + 3)(z - 2)[/tex] is equivalent to:

A. [tex]4z^2 - 5z - 6[/tex]

B. [tex]4z^2 - 6[/tex]

C. [tex]4z^2 - 5[/tex]

D. [tex]4z^2 + 5z - 6[/tex]

E. [tex]4z^2 - 3z - 5[/tex]



Answer :

To determine which of the provided options is equivalent to the expression [tex]\((4z + 3)(z - 2)\)[/tex], we will expand this expression step by step.

1. First, apply the distributive property (also known as FOIL method for binomials) to the expression [tex]\((4z + 3)(z - 2)\)[/tex]:

[tex]\[(4z + 3)(z - 2) = (4z)(z) + (4z)(-2) + (3)(z) + (3)(-2)\][/tex]

2. Calculate each term:

[tex]\[ \begin{align*} (4z)(z) & = 4z^2 \\ (4z)(-2) & = -8z \\ (3)(z) & = 3z \\ (3)(-2) & = -6 \end{align*} \][/tex]

3. Combine the calculated terms:

[tex]\[ 4z^2 + (-8z) + (3z) + (-6) \][/tex]

4. Simplify the expression by combining like terms:

[tex]\[ 4z^2 - 8z + 3z - 6 = 4z^2 - 5z - 6 \][/tex]

5. So the expanded form of the expression [tex]\((4z + 3)(z - 2)\)[/tex] is [tex]\(4z^2 - 5z - 6\)[/tex].

Now, let's match this result with the given options:
[tex]\[ \begin{align*} 1. & \ 4z^2 - 5z - 6 \\ 2. & \ 4z^2 - 6 \\ 3. & \ 4z^2 - 5 \\ 4. & \ 4z^2 + 5z - 6 \\ 5. & \ 4z^2 - 3z - 5 \end{align*} \][/tex]

The expanded form ( [tex]\(4z^2 - 5z - 6\)[/tex] ) matches exactly with the first option.

Therefore, the expression [tex]\((4z + 3)(z - 2)\)[/tex] is equivalent to [tex]\(4z^2 - 5z - 6\)[/tex].