The mass of a crystal is [tex]0 . \overline{49} \, \text{kg}[/tex].

a. Write [tex]0 . \overline{49}[/tex] as a fraction. Show your work.



Answer :

To convert the repeating decimal [tex]\( 0.\overline{49} \)[/tex] into a fraction, follow these steps:

1. Let [tex]\( x = 0.\overline{49} \)[/tex]:

This means that [tex]\( x \)[/tex] is equal to the repeating decimal [tex]\( 0.494949494949... \)[/tex].

2. Multiply both sides of the equation by 100:

Multiplying by 100 shifts the decimal point two places to the right:

[tex]\[ 100x = 49.494949494949... \][/tex]

3. Subtract the original equation from this new equation:

[tex]\[ 100x = 49.494949494949... \][/tex]
[tex]\[ - \quad x = 0.494949494949... \][/tex]
[tex]\[ 99x = 49 \][/tex]

4. Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{49}{99} \][/tex]

So [tex]\( 0.\overline{49} \)[/tex] as a fraction is [tex]\( \frac{49}{99} \)[/tex].

Next, you might simplify the fraction. In this case, [tex]\( \frac{49}{99} \)[/tex] is already in its simplest form because the greatest common divisor (GCD) of 49 and 99 is 1.

Thus, [tex]\( 0.\overline{49} \)[/tex] as a fraction is:

[tex]\[ \boxed{\frac{49}{99}} \][/tex]