To solve the expression [tex]\(2r^3 + \sqrt{q} - 2p\)[/tex], let's break it down step-by-step:
1. Evaluating [tex]\(2r^3\)[/tex]:
- We need to cube the variable [tex]\(r\)[/tex] and then multiply the result by 2.
- Let's assume [tex]\(r = 2\)[/tex].
- So, [tex]\(2 \cdot (r^3) = 2 \cdot (2^3) = 2 \cdot 8 = 16\)[/tex].
2. Evaluating [tex]\(\sqrt{q}\)[/tex]:
- We need to find the square root of the variable [tex]\(q\)[/tex].
- Let's assume [tex]\(q = 4\)[/tex].
- So, [tex]\(\sqrt{4} = 2\)[/tex].
3. Evaluating [tex]\(-2p\)[/tex]:
- We need to multiply the variable [tex]\(p\)[/tex] by [tex]\(-2\)[/tex].
- Let's assume [tex]\(p = 3\)[/tex].
- So, [tex]\(-2 \cdot 3 = -6\)[/tex].
4. Combining all parts together:
- We now combine [tex]\(2r^3\)[/tex], [tex]\(\sqrt{q}\)[/tex], and [tex]\(-2p\)[/tex].
- This gives us: [tex]\(16 + 2 - 6\)[/tex].
5. Final calculation:
- Adding and subtracting these values: [tex]\(16 + 2 = 18\)[/tex].
- Then, [tex]\(18 - 6 = 12\)[/tex].
So, the result of the expression [tex]\(2r^3 + \sqrt{q} - 2p\)[/tex] is [tex]\(12\)[/tex].