Which expression is equivalent to [tex]$12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12$[/tex]?

A. [tex]$10^{12}$[/tex]
B. [tex][tex]$11^{12}$[/tex][/tex]
C. [tex]$12^{10}$[/tex]
D. [tex]$12^{11}$[/tex]



Answer :

To determine which expression is equivalent to [tex]\(12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12\)[/tex], we need to understand how repeated multiplication can be expressed using exponents.

When you multiply the same number repeatedly, you can express it as that number raised to the power of how many times it is multiplied. Let's break it down:

[tex]\[ 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \][/tex]

Here, the number 12 is multiplied by itself 11 times. This can be written in exponential form as:

[tex]\[ 12^{11} \][/tex]

So, the expression [tex]\(12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12\)[/tex] is equivalent to [tex]\(12^{11}\)[/tex].

Hence, the correct option is:

[tex]\[ 12^{11} \][/tex]