Answer :

Let's evaluate the expression step-by-step:

[tex]\[ 9^{\frac{3}{2}} + e^0 + \ln 1 \][/tex]

1. Evaluate [tex]\( 9^{\frac{3}{2}} \)[/tex]:

To find [tex]\( 9^{\frac{3}{2}} \)[/tex], we can rewrite it as a combination of a power and a root:
[tex]\[ 9^{\frac{3}{2}} = (9^{\frac{1}{2}})^3 \][/tex]
The term [tex]\( 9^{\frac{1}{2}} \)[/tex] represents the square root of 9. The square root of 9 is 3. Therefore:
[tex]\[ 9^{\frac{1}{2}} = 3 \][/tex]
Now, raising 3 to the power of 3, we get:
[tex]\[ (3)^3 = 27 \][/tex]
Thus:
[tex]\[ 9^{\frac{3}{2}} = 27 \][/tex]

2. Evaluate [tex]\( e^0 \)[/tex]:

By definition, any number (except zero) raised to the power of 0 is 1:
[tex]\[ e^0 = 1 \][/tex]

3. Evaluate [tex]\( \ln 1 \)[/tex]:

The natural logarithm of 1 is always 0:
[tex]\[ \ln 1 = 0 \][/tex]

Now, we combine all the evaluated parts:

[tex]\[ 9^{\frac{3}{2}} + e^0 + \ln 1 = 27 + 1 + 0 = 28 \][/tex]

Therefore, the value of the expression [tex]\( 9^{\frac{3}{2}} + e^0 + \ln 1 \)[/tex] is:

[tex]\[ \boxed{28} \][/tex]