Which represents the value of [tex]$x$[/tex] in [tex]$6-4x \leq 26$[/tex]?

A. [tex][tex]$x \leq -8$[/tex][/tex]

B. [tex]$x \geq -8$[/tex]

C. [tex]$x \leq -5$[/tex]

D. [tex][tex]$x \geq -5$[/tex][/tex]



Answer :

To solve the inequality [tex]\(6 - 4x \leq 26\)[/tex], let's follow a step-by-step approach:

1. Isolate the linear term involving [tex]\(x\)[/tex]:
[tex]\[ 6 - 4x \leq 26 \][/tex]
Subtract 6 from both sides to eliminate the constant term on the left side:
[tex]\[ 6 - 4x - 6 \leq 26 - 6 \][/tex]
Simplifying, we get:
[tex]\[ -4x \leq 20 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
Divide both sides by -4. Remember that when you divide both sides of an inequality by a negative number, you must reverse the inequality sign:
[tex]\[ \frac{-4x}{-4} \geq \frac{20}{-4} \][/tex]
Simplifying, we get:
[tex]\[ x \geq -5 \][/tex]

So, the solution to the inequality [tex]\(6 - 4x \leq 26\)[/tex] is:
[tex]\[ x \geq -5 \][/tex]

Therefore, the correct answer is:
[tex]\[ D. x \geq -5 \][/tex]