The table shows the amount of flour Dylan needs to bake various numbers of cupcakes.

[tex]\[
\begin{array}{c|c}
\text{Number of Cupcakes} \, (\text{dozens}) & \text{Flour} \, (\text{cups}) \\
\hline
\frac{1}{2} & \frac{3}{4} \\
\hline
1 \frac{1}{4} & 1 \frac{7}{8} \\
\hline
2 \frac{1}{2} & 3 \frac{3}{4} \\
\hline
1 \frac{3}{4} & 2 \frac{5}{8} \\
\hline
\end{array}
\][/tex]



Answer :

Absolutely! Let's carefully match each row of the table to the appropriate values provided.

### Step-by-Step Solution:

1. First Row:
- Number of Cupcakes (dozens): [tex]\(\frac{1}{2}\)[/tex]
- Flour (cups): [tex]\(\frac{3}{4}\)[/tex]

2. Second Row:
- Number of Cupcakes (dozens): [tex]\(1 \frac{1}{4}\)[/tex]
- Flour (cups): [tex]\(1 \frac{7}{8}\)[/tex]

3. Third Row:
- Number of Cupcakes (dozens): [tex]\(2 \frac{1}{2}\)[/tex]
- Flour (cups): [tex]\(3 \frac{3}{4}\)[/tex]

4. Fourth Row:
- Number of Cupcakes (dozens): [tex]\(1 \frac{3}{4}\)[/tex]
- Flour (cups): [tex]\(2 \frac{5}{8}\)[/tex]

Summarizing all the given information into the table:

[tex]\[ \begin{array}{|c|c|} \hline \text{Number of Cupcakes (dozens)} & \text{Flour (cups)} \\ \hline \frac{1}{2} & \frac{3}{4} \\ \hline 1 \frac{1}{4} & 1 \frac{7}{8} \\ \hline 2 \frac{1}{2} & 3 \frac{3}{4} \\ \hline 1 \frac{3}{4} & 2 \frac{5}{8} \\ \hline \end{array} \][/tex]

This table correctly represents the relationship provided between the number of cupcakes and the amount of flour needed.