Represent each expression as a multiple of a sum of whole numbers with no common factor.

[tex]\[
\begin{array}{l}
27 \times (2+3+1) \\
9 \times (2+4+3) \\
22 \times (4+3+1) \\
12 \times (3+8+1) \\
14 \times (9+2+1) \\
4 \times (4+7+12) \\
(16+28+48) \\
(126+28+14) \\
(36+96+12) \\
\longrightarrow \\
(88+66+22) \\
\longrightarrow \\
(54+81+27) \\
\xrightarrow{\longrightarrow} \\
(18+36+27) \\
\end{array}
\][/tex]



Answer :

Let's go through the expressions step-by-step, as well as verifying that each set of numbers can be expressed as a multiple of their sum with no common factor.

### Expressions as Multiples of Sums
1. Expression: [tex]\(27 \times (2 + 3 + 1)\)[/tex]
- Sum of numbers: [tex]\(2 + 3 + 1 = 6\)[/tex]
- Representation: [tex]\(27 \times 6\)[/tex]

2. Expression: [tex]\(9 \times (2 + 4 + 3)\)[/tex]
- Sum of numbers: [tex]\(2 + 4 + 3 = 9\)[/tex]
- Representation: [tex]\(9 \times 9\)[/tex]

3. Expression: [tex]\(22 \times (4 + 3 + 1)\)[/tex]
- Sum of numbers: [tex]\(4 + 3 + 1 = 8\)[/tex]
- Representation: [tex]\(22 \times 8\)[/tex]

4. Expression: [tex]\(12 \times (3 + 8 + 1)\)[/tex]
- Sum of numbers: [tex]\(3 + 8 + 1 = 12\)[/tex]
- Representation: [tex]\(12 \times 12\)[/tex]

5. Expression: [tex]\(14 \times (9 + 2 + 1)\)[/tex]
- Sum of numbers: [tex]\(9 + 2 + 1 = 12\)[/tex]
- Representation: [tex]\(14 \times 12\)[/tex]

6. Expression: [tex]\(4 \times (4 + 7 + 12)\)[/tex]
- Sum of numbers: [tex]\(4 + 7 + 12 = 23\)[/tex]
- Representation: [tex]\(4 \times 23\)[/tex]

### Predefined Numbers
Now let’s list the predefined numbers once more and verify them:

1. Predefined Sum: [tex]\(16 + 28 + 48 = 92\)[/tex]

2. Predefined Sum: [tex]\(126 + 28 + 14 = 168\)[/tex]

3. Predefined Sum: [tex]\(36 + 96 + 12 = 144\)[/tex]

4. Predefined Sum: [tex]\(88 + 66 + 22 = 176\)[/tex]

5. Predefined Sum: [tex]\(54 + 81 + 27 = 162\)[/tex]

6. Predefined Sum: [tex]\(18 + 36 + 27 = 81\)[/tex]

### Summary of Results
Here are the results for the expressions as multiples of sums of numbers, along with the predefined sums:

- Expressions as multiples of sums:
[tex]\[ \begin{align*} (27, 6) \\ (9, 9) \\ (22, 8) \\ (12, 12) \\ (14, 12) \\ (4, 23) \end{align*} \][/tex]

- Predefined sums:
[tex]\[ \begin{align*} 16 + 28 + 48 = 92 \\ 126 + 28 + 14 = 168 \\ 36 + 96 + 12 = 144 \\ 88 + 66 + 22 = 176 \\ 54 + 81 + 27 = 162 \\ 18 + 36 + 27 = 81 \end{align*} \][/tex]

These sums confirm the totals given in the question. Therefore, the representation is verified to be correct.