Select the correct answer.

What is the result of factoring out the GCF from the expression [tex](24+36)[/tex]?

A. [tex]12 \times (12 + 18)[/tex]
B. [tex]12 \times (2 + 3)[/tex]
C. [tex]6 \times (8 + 12)[/tex]
D. [tex]12 \times (4 + 6)[/tex]



Answer :

To solve the problem of factoring out the greatest common factor (GCF) from the expression [tex]\( 24 + 36 \)[/tex], let's follow these steps:

1. Identify the GCF (Greatest Common Factor):
- First, list the factors of each number.
- Factors of [tex]\( 24 \)[/tex]: [tex]\( 1, 2, 3, 4, 6, 8, 12, 24 \)[/tex]
- Factors of [tex]\( 36 \)[/tex]: [tex]\( 1, 2, 3, 4, 6, 9, 12, 18, 36 \)[/tex]
- The common factors are [tex]\( 1, 2, 3, 4, 6, 12 \)[/tex].
- The greatest common factor is [tex]\( 12 \)[/tex].

2. Factor out the GCF from each term:
- Next, divide each term by the GCF [tex]\( 12 \)[/tex]:
- [tex]\( \frac{24}{12} = 2 \)[/tex]
- [tex]\( \frac{36}{12} = 3 \)[/tex]

3. Rewrite the expression using the GCF:
- The expression [tex]\( 24 + 36 \)[/tex] can be rewritten as [tex]\( 12 \times (2 + 3) \)[/tex].

Therefore, the factored form of [tex]\( 24 + 36 \)[/tex] is [tex]\( 12 \times (2 + 3) \)[/tex].

The correct answer is:
B. [tex]\( 12 \times (2 + 3) \)[/tex]