mikuuu
Answered

Consider the graph of the function [tex]$f(x) = e^x$[/tex].

What is the [tex]$y$[/tex]-intercept of function [tex][tex]$g$[/tex][/tex] if [tex]$g(x) = 2f(x) + 1$[/tex]?

A. [tex]$(0, 3)$[/tex]

B. [tex][tex]$(0, -1)$[/tex][/tex]

C. [tex]$(0, 1)$[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function [tex]\( g \)[/tex] where [tex]\( g(x) = 2f(x) + 1 \)[/tex] and [tex]\( f(x) = e^x \)[/tex], we need to determine the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex].

Step-by-step solution:

1. Identify the given functions:
[tex]\[ f(x) = e^x \][/tex]
[tex]\[ g(x) = 2f(x) + 1 \][/tex]

2. Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = e^0 = 1 \][/tex]

3. Plug [tex]\( f(0) \)[/tex] into the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = 2f(0) + 1 = 2 \cdot 1 + 1 = 2 + 1 = 3 \][/tex]

4. Conclusion:
The [tex]\( y \)[/tex]-intercept of the function [tex]\( g(x) \)[/tex] occurs at the point where [tex]\( x = 0 \)[/tex]. So, the [tex]\( y \)[/tex]-intercept is:
[tex]\[ (0, 3) \][/tex]

Therefore, the correct answer is:
A. [tex]\((0, 3)\)[/tex]