Let [tex]$u = PQ$[/tex] be the directed line segment from [tex]$P(0,0)$[/tex] to [tex][tex]$Q(9,12)$[/tex][/tex], and let [tex]$c$[/tex] be a scalar such that [tex]$c \ \textless \ 0$[/tex]. Which statement best describes [tex][tex]$cu$[/tex][/tex]?

A. The terminal point of [tex]$cu$[/tex] lies in Quadrant I.
B. The terminal point of [tex]$cu$[/tex] lies in Quadrant II.
C. The terminal point of [tex][tex]$cu$[/tex][/tex] lies in Quadrant IV.
D. The terminal point of [tex]$cu$[/tex] lies in Quadrant III.



Answer :

Let's start by analyzing the given problem step-by-step:

1. Define Points [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]:
- [tex]\( P \)[/tex] is at the origin: [tex]\( P(0, 0) \)[/tex]
- [tex]\( Q \)[/tex] is at: [tex]\( Q(9, 12) \)[/tex]

2. Determine the Direction Vector [tex]\( u \)[/tex]:
- The direction vector [tex]\( u \)[/tex] from [tex]\( P \)[/tex] to [tex]\( Q \)[/tex] is obtained by subtracting the coordinates of [tex]\( P \)[/tex] from those of [tex]\( Q \)[/tex]:
[tex]\[ u = Q - P = (9 - 0, 12 - 0) = (9, 12) \][/tex]

3. Scaling the Vector [tex]\( u \)[/tex] by Scalar [tex]\( c \)[/tex]:
- Given that [tex]\( c \)[/tex] is a scalar such that [tex]\( c < 0 \)[/tex], we need to find the vector [tex]\( cu \)[/tex].
- Since [tex]\( c \)[/tex] is negative, multiplying the vector [tex]\( u \)[/tex] by [tex]\( c \)[/tex] will reverse its direction.
- If [tex]\( c = -1 \)[/tex] (a common choice for simplicity when [tex]\( c \)[/tex] is negative), the scaled vector [tex]\( cu \)[/tex] is:
[tex]\[ cu = c \cdot u = -1 \cdot (9, 12) = (-9, -12) \][/tex]

4. Determining the Terminal Point and Its Quadrant:
- The terminal point of the vector [tex]\( (-9, -12) \)[/tex] indicates where the vector points in coordinate space.
- The coordinates [tex]\( (-9, -12) \)[/tex] represent a point that is 9 units to the left and 12 units down from the origin.
- The negative x-coordinate and negative y-coordinate tell us that the terminal point lies in Quadrant III.

Therefore, the best statement that describes [tex]\( cu \)[/tex] is:

The terminal point of [tex]\( cu \)[/tex] lies in Quadrant III.