Given that the least-squares regression line is [tex]\hat{y} = -3.5x - 2.9[/tex], what is the best predicted value for [tex]y[/tex] given [tex]x = 2.6[/tex]?

A. 12
B. -12
C. -6.2
D. 6.2



Answer :

To find the best predicted value for [tex]\( y \)[/tex] given [tex]\( x = 2.6 \)[/tex] using the least-squares regression line [tex]\(\hat{y} = -3.5x - 2.9\)[/tex], follow these steps:

1. Identify the regression equation and given [tex]\( x \)[/tex] value.
The regression equation is [tex]\(\hat{y} = -3.5x - 2.9\)[/tex]. We are given [tex]\( x = 2.6 \)[/tex].

2. Substitute the given [tex]\( x \)[/tex] value into the regression equation.
[tex]\[ \hat{y} = -3.5 \cdot 2.6 - 2.9 \][/tex]

3. Perform the multiplication and addition to solve for [tex]\(\hat{y}\)[/tex].
[tex]\[ -3.5 \cdot 2.6 = -9.1 \][/tex]
Then,
[tex]\[ \hat{y} = -9.1 - 2.9 \][/tex]

4. Complete the calculation.
[tex]\[ \hat{y} = -9.1 - 2.9 = -12.0 \][/tex]

Therefore, the best predicted value for [tex]\( y \)[/tex] when [tex]\( x = 2.6 \)[/tex] is [tex]\(\boxed{-12}\)[/tex].