To find the midpoint of the points [tex]\((5, 7)\)[/tex] and [tex]\((3, 9)\)[/tex], we use the midpoint formula. The midpoint [tex]\(M\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[
M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\][/tex]
Here are the coordinates of the given points:
[tex]\[
(x_1, y_1) = (5, 7) \quad \text{and} \quad (x_2, y_2) = (3, 9)
\][/tex]
Substitute the coordinates into the midpoint formula:
1. Calculate the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[
\frac{x_1 + x_2}{2} = \frac{5 + 3}{2} = \frac{8}{2} = 4.0
\][/tex]
2. Calculate the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[
\frac{y_1 + y_2}{2} = \frac{7 + 9}{2} = \frac{16}{2} = 8.0
\][/tex]
Therefore, the midpoint of the points [tex]\((5, 7)\)[/tex] and [tex]\((3, 9)\)[/tex] is:
[tex]\[
(4.0, 8.0)
\][/tex]