Which number is three hundred thousand times larger than [tex]$1.6 \times 10^2$[/tex]?

A. [tex]$4.8 \times 10^6$[/tex]
B. [tex][tex]$4.8 \times 10^7$[/tex][/tex]
C. [tex]$4.8 \times 10^8$[/tex]
D. [tex]$4.8 \times 10^9$[/tex]
E. [tex][tex]$4.8 \times 10^{10}$[/tex][/tex]



Answer :

To determine which number is three hundred thousand times larger than [tex]\(1.6 \times 10^2\)[/tex], we will follow these steps:

1. Start with the given number: [tex]\(1.6 \times 10^2\)[/tex].

2. Understand that multiplying by three hundred thousand ([tex]\( 3 \times 10^5 \)[/tex]) involves multiplying this coefficient directly by the numerical value of 300,000.

3. Calculate:
[tex]\[ (1.6 \times 10^2) \times (3 \times 10^5) \][/tex]

4. Separate the coefficients and the powers of ten:
[tex]\[ 1.6 \times 3 = 4.8 \][/tex]
and
[tex]\[ 10^2 \times 10^5 = 10^{2+5} = 10^7 \][/tex]

5. Combine the results:
[tex]\[ 4.8 \times 10^7 \][/tex]

Thus, the number that is three hundred thousand times larger than [tex]\(1.6 \times 10^2\)[/tex] is:
[tex]\[ \boxed{4.8 \times 10^7} \][/tex]