Answer :
To prove [tex]\( x = 9 \)[/tex] given the equation [tex]\( 3(x - 5) = x + 3 \)[/tex], we need to fill in the missing statements in the provided proof table. Let's complete the proof step-by-step:
Given equation:
[tex]\[ 3(x - 5) = x + 3 \][/tex]
### Proof Table Completion
| Statement | Reason |
|----------------------|---------------------------------------------|
| 1. [tex]\( 3(x - 5) = x + 3 \)[/tex] | 1. Given |
| 2. [tex]\( 3x - 15 = x + 3 \)[/tex] | 2. Distributive Property of Equality |
| 3. [tex]\( 2x - 15 = 3 \)[/tex] | 3. Subtraction Property of Equality |
| 4. [tex]\( 2x = 18 \)[/tex] | 4. Addition Property of Equality |
| 5. [tex]\( x = 9 \)[/tex] | 5. Division Property of Equality |
### Step-by-Step Solution:
1. Given: [tex]\( 3(x - 5) = x + 3 \)[/tex].
_This is the equation we start with._
2. Distributive Property of Equality: Distribute the [tex]\( 3 \)[/tex] on the left side.
[tex]\[ 3(x - 5) = 3x - 15 \][/tex]
So, the equation [tex]\( 3(x - 5) = x + 3 \)[/tex] becomes:
[tex]\[ 3x - 15 = x + 3 \][/tex]
3. Subtraction Property of Equality: Subtract [tex]\( x \)[/tex] from both sides to move the [tex]\( x \)[/tex]-terms to one side.
[tex]\[ 3x - x - 15 = 3 \][/tex]
Simplifying the equation:
[tex]\[ 2x - 15 = 3 \][/tex]
4. Addition Property of Equality: Add 15 to both sides to isolate the [tex]\( x \)[/tex]-term.
[tex]\[ 2x - 15 + 15 = 3 + 15 \][/tex]
Simplifying the equation:
[tex]\[ 2x = 18 \][/tex]
5. Division Property of Equality: Divide both sides by 2 to solve for [tex]\( x \)[/tex].
[tex]\[ x = \frac{18}{2} \][/tex]
Simplifying the equation:
[tex]\[ x = 9 \][/tex]
Thus, your proof table is now complete, and the correct choice for blank 2 is:
[tex]\[ \boxed{3x - 15 = x + 3} \][/tex]
Given equation:
[tex]\[ 3(x - 5) = x + 3 \][/tex]
### Proof Table Completion
| Statement | Reason |
|----------------------|---------------------------------------------|
| 1. [tex]\( 3(x - 5) = x + 3 \)[/tex] | 1. Given |
| 2. [tex]\( 3x - 15 = x + 3 \)[/tex] | 2. Distributive Property of Equality |
| 3. [tex]\( 2x - 15 = 3 \)[/tex] | 3. Subtraction Property of Equality |
| 4. [tex]\( 2x = 18 \)[/tex] | 4. Addition Property of Equality |
| 5. [tex]\( x = 9 \)[/tex] | 5. Division Property of Equality |
### Step-by-Step Solution:
1. Given: [tex]\( 3(x - 5) = x + 3 \)[/tex].
_This is the equation we start with._
2. Distributive Property of Equality: Distribute the [tex]\( 3 \)[/tex] on the left side.
[tex]\[ 3(x - 5) = 3x - 15 \][/tex]
So, the equation [tex]\( 3(x - 5) = x + 3 \)[/tex] becomes:
[tex]\[ 3x - 15 = x + 3 \][/tex]
3. Subtraction Property of Equality: Subtract [tex]\( x \)[/tex] from both sides to move the [tex]\( x \)[/tex]-terms to one side.
[tex]\[ 3x - x - 15 = 3 \][/tex]
Simplifying the equation:
[tex]\[ 2x - 15 = 3 \][/tex]
4. Addition Property of Equality: Add 15 to both sides to isolate the [tex]\( x \)[/tex]-term.
[tex]\[ 2x - 15 + 15 = 3 + 15 \][/tex]
Simplifying the equation:
[tex]\[ 2x = 18 \][/tex]
5. Division Property of Equality: Divide both sides by 2 to solve for [tex]\( x \)[/tex].
[tex]\[ x = \frac{18}{2} \][/tex]
Simplifying the equation:
[tex]\[ x = 9 \][/tex]
Thus, your proof table is now complete, and the correct choice for blank 2 is:
[tex]\[ \boxed{3x - 15 = x + 3} \][/tex]