Answer :

[tex]\sqrt{48n^9}=\sqrt{16n^8\cdot3n}=\sqrt{16n^8}\cdot\sqrt{3n}=4n^4\sqrt{3n}[/tex]

Answer:

[tex]4n^4\sqrt{3n}[/tex]

Step-by-step explanation:

Use the exponent rules:

[tex]\sqrt[n]{x^a} = x^{\frac{a}{n}}[/tex]

[tex]\sqrt[n]{a^n} =a[/tex]

To find the simplified form of :

[tex]\sqrt{48n^9}[/tex]

We can write 48 and [tex]n^9[/tex] as:

[tex]48 = 4 \cdot 4 \cdot 3 = 4^2 \cdot 3[/tex]

[tex]n^9 = (n^4)^2 \cdot n[/tex]

then;

[tex]\sqrt{4^2 \cdot 3 \cdot (n^4)^2 \cdot n}[/tex]

Apply the exponent rule:

⇒[tex]4 \cdot n^4 \cdot \sqrt{3n}[/tex]

⇒[tex]4n^4\sqrt{3n}[/tex]

Therefore, the simplified form of square root 48n^9 is, [tex]4n^4\sqrt{3n}[/tex]