[tex] \frac{a^3+a+a^2+1}{a^3+a^2+ab^2+b^2} \cdot \frac{2a^2+2ab+ab^2+b^3}{a^3+a+a^2b+b} =\frac{a(a^2+1)+1(a^2+1)}{a^2(a+1)+b^2(a+1)} \cdot \frac{2a(a+b)+b^2(a+b)}{a(a^2+1)+b(a^2+1)} =\\\\=\frac{(a^2+1)(a+1)}{(a+1)(a^2+b^2)} \cdot \frac{(a+b)(2a+b^2)}{(a^2+1)(a+b)} = \frac{2a+b^2}{a^2+b^2} [/tex]