Answer :
[tex]D:\\10-4x > 0\ \wedge\ 10-3x > 0\\-4x > -10\ \vee\ -3x > -10\\\\x < \frac{10}{4}\ \wedge\ x < \frac{10}{3}\\\\x < 2\frac{1}{2}\ \wedge\ x < 3\frac{1}{3}\\\\x\in(-\infty;\ 2\frac{1}{2})[/tex]
[tex]log(10-4x)=log(10-3x)\iff10-4x=10-3x\\\\-4x+3x=10-10\\\\-x=0\ \ \ /\cdot(-1)\\\\x=0\in D\\\\Solution:x=0[/tex]
[tex]log(10-4x)=log(10-3x)\iff10-4x=10-3x\\\\-4x+3x=10-10\\\\-x=0\ \ \ /\cdot(-1)\\\\x=0\in D\\\\Solution:x=0[/tex]
[tex]\log (10-4x) = \log (10-3x) \\
D:10-4x>0 \wedge 10-3x>0\\
D:4x<10 \wedge 3x<10\\
D:x<2.5 \wedge x<3\frac{1}{3}\\
D:x<2.5\\
10-4x=10-3x\\
x=0[/tex]