Answer :
[tex]log_82+log_84x^2=1;\ D:x^2 > 0\Rightarrow x\neq0\\\\log_8(2\cdot4x^2)=log_88^1\\\\log_88x^2=log_88\iff8x^2=8\ \ \ |both\ sides\ /:8\\\\x^2=1\iff x=-1\ or\ x=1.\\\\Solutions:x=-1\ \vee\ x=1.[/tex]
[tex]\log_82+\log_84x^2=1\\
D:4x^2>0\\
D:x\in\mathbb{R}\\
\log_88x^2=1\\
8^1=8x^2\\
x^2=1\\
x=-1 \vee x=1\\[/tex]