Answer :

1 / ( r + 3 ) = ( r + 4 ) / ( r - 2 ) + 6 / ( r - 2 ); where r isn't -3 and 2;

1 / ( r + 3 ) =  ( r + 10 ) / ( r - 2 )

r - 2 = ( r + 10 )*( r + 3)

r - 2 = r ^2 + 13*r + 30

r^2 + 12 * r + 32 = 0

r^2 + 4*r + 8*r + 32 = 0

r( r + 4 ) + 8( r + 4 ) = 0

( r + 4 )*( r + 8 ) = 0

r + 4 = 0 => r = - 4;
or
r + 8 = 0 => r = - 8;

The solutions are : -4 ; -8.