Answer :
[tex]log_6(x+1)-log_6x=log_629;\ D:x+1 > 0\ \wedge\ x > 0\Rightarrow x\in\mathbb{R^+}\\\\log_6\frac{x+1}{x}=log_629\iff\frac{x+1}{x}=29\\\\29x=x+1\\\\29x-x=1\\\\28x=1\ \ \ \ /:28\\\\x=\frac{1}{28}\in D\leftarrow solution[/tex]
[tex]D:x+1>0 \wedge x>0\\
D:x>-1 \wedge x>0\\
D:x>0\\
\log_6(x+1)-\log_6 x=\log_6 29\\
\log_6(x+1)=\log_6 29+\log_6x\\
\log_6(x+1)=\log_6 29x\\
x+1=29x\\
28x=1\\
x=\frac{1}{28}[/tex]