Answer :
[tex] x_{1}=2\\y_1=4\\x_2=4\\y_2=10[/tex]
equation of the line passes through two points:
[tex](x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)\\(4-2)(y-4)=(10-4)(x-2)\\2y-8=6x-12\\2y=6x-4\\y=3x-2[/tex]
equation of the line passes through two points:
[tex](x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)\\(4-2)(y-4)=(10-4)(x-2)\\2y-8=6x-12\\2y=6x-4\\y=3x-2[/tex]
the slope is [tex]\frac {10-4}{4-2} = 3[/tex] and thus our equation becomes [tex]y-4=3*(x-2)[/tex].
If we rearrange terms we get [tex]y=3x-2[/tex]
If we rearrange terms we get [tex]y=3x-2[/tex]