[tex]Formula\ for\ period:\\\ T=2 \pi \sqrt{\frac{L}{g}}\\\ g-gravity=9,8 \frac{m}{s^2} ,\ L-pendulum \ length \\\\ \frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\\\ \frac{T^2}{2 \pi } = \frac{L}{g} \\\\\ \frac{T^2}{2 \pi }*g=L\\\\ L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24m [/tex][tex]T=2 \pi \sqrt{\frac{L}{g}} \\
\frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\
\frac{T^2}{2 \pi } = \frac{L}{g} \\
\frac{T^2}{2 \pi }*g=L\\
L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24m
[/tex]