Answer :
It helps you:
[tex]1\frac{km}{h}=1\cdot\frac{1000m}{3600s}=\frac{10}{36}\frac{m}{s}[/tex]
[tex]75\frac{km}{h}=75\cdot\frac{1000m}{3600s}=\frac{750\cdot10}{36}\frac{m}{s}=\frac{750}{36}\frac{m}{s}~=20,83\frac{m}{s}[/tex]
[tex]1\frac{km}{h}=1\cdot\frac{1000m}{3600s}=\frac{10}{36}\frac{m}{s}[/tex]
[tex]75\frac{km}{h}=75\cdot\frac{1000m}{3600s}=\frac{750\cdot10}{36}\frac{m}{s}=\frac{750}{36}\frac{m}{s}~=20,83\frac{m}{s}[/tex]
When you say "Which...", does that mean you're looking at a list of choices
and not sharing it ?
To change (kilometers/hour) to (meters/minute), multiply (kilometers/hour) by
(1,000 meters/kilometer) x (hour/60 minutes).
Both of those fractions are equal to ' 1 ', so the process doesn't change the
original quantity, just its units.
and not sharing it ?
To change (kilometers/hour) to (meters/minute), multiply (kilometers/hour) by
(1,000 meters/kilometer) x (hour/60 minutes).
Both of those fractions are equal to ' 1 ', so the process doesn't change the
original quantity, just its units.