Answer :
[tex]T_r={n \choose r-1}a^{n-(r-1)}b^{r-1}\\T_5={10 \choose 5-1}(2x)^{10-(5-1)}y^{5-1}\\T_5={10 \choose 4}(2x)^6y^{4}\\T_5=\frac{10!}{4!6!}64x^6y^{4}\\T_5=\frac{7\cdot8\cdot9\cdot10}{2\cdot3\cdot4}64x^6y^{4}\\T_5=7\cdot3\cdot10\cdot64x^6y^{4}\\T_5=13440x^6y^4[/tex]
5th term in the expansion is
C(10,4) (2x)^(10-4) (y)^4
= 10C4 (2x)^6 y^4
= 10! / (6! 4! ) 2^6 x^6 y^4
= 7 * 8 * 9 * 10 / 24 * 64 *x^6 y^4
= 13440 x^6 y^4
C(10,4) (2x)^(10-4) (y)^4
= 10C4 (2x)^6 y^4
= 10! / (6! 4! ) 2^6 x^6 y^4
= 7 * 8 * 9 * 10 / 24 * 64 *x^6 y^4
= 13440 x^6 y^4