Answer :
[tex]S=2\pi r^2+2\pi rh\\\\2\pi r^2+2\pi rh=S\ \ \ \ |subtract\ 2\pi r^2\ from\ both\ sides\\\\2\pi rh=S-2\pi r^2\ \ \ \ |divide\ both\ sides\ by\ 2\pi r\\\\\boxed{h=\frac{S-2\pi r^2}{2\pi r}}[/tex]
S = 2πr² + 2πrh
[tex]h = \frac{S - 2 \pi r^{2} }{2 \pi r} [/tex]
[tex]h = \frac{S}{2 \pi r} - \frac{2 \pi r^{2} }{2 \pi r} [/tex]
[tex]h = \frac{S}{2 \pi r} - r[/tex]
[tex]h = \frac{S - 2 \pi r^{2} }{2 \pi r} [/tex]
[tex]h = \frac{S}{2 \pi r} - \frac{2 \pi r^{2} }{2 \pi r} [/tex]
[tex]h = \frac{S}{2 \pi r} - r[/tex]