Answer :
[tex]x,y- unknown\ numbers\\\\\ \left \{ {{xy=-126} \atop {x+y=-5}} \right.\\\\\ \left \{ {{xy=-126} \atop {x=-5-y}} \right. \\\\\Substituting x=-5-y\ into\ the\ first\ equation:\\\\(-5-y)y=-126\\\\-5y-y^2=-126\\\\-y^2-5y+126=0 \\\\Finding\ roots:\\\\We\ are\ calculating\ delta\\\\ \Delta=b^2-4ac\\\\a=-1,\ b=-5,\ c=126 \\\\\Delta=(-5)^2-4*(-1)*126=25+504=529\\\\ y_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{5-23}{-2}=\frac{-18}{-2}=9\\\\ y_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{5+23}{-2}=\frac{28}{-2}=-14\\\\[/tex][tex]Numbers\ are: \ 9 \ and\ -14.[/tex]
[tex]xy=-126\\ x+y=-5\\\\ xy=-126\\ x=-5-y\\\\ (-5-y)y=-126\\ -5y-y^2+126=0\\ -y^2-5y+126=0\\-y^2-14y+9y+126=0\\
-y(y+14)+9(y+14)=0\\
-(y-9)(y+14)=0\\
y=9 \vee y=-14\\\\
x=-5-9 \vee x=-5-(-14)\\
x=-14 \vee x=9[/tex]
Those numbers are -14 and 9.
Those numbers are -14 and 9.