The vertex form of the equation of a parabola is x = (y - 2)2 + 36. 
What is the standard form of the equation?
 
A.x = 2y2 - 4y + 40
 
B.x = y2 + y + 12
 
C.x = y2 - 4y + 40
D.x = y2 + 4y + 36



Answer :

Ok to do this we need to multiply out the brackets:
x=y²-4y+40 therefore C is the answer.

Answer:

Option C is correct

[tex]x = y^2-4y+40[/tex]

Step-by-step explanation:

The standard for of the quadratic equation is given as:

[tex]x= Ay^2+By+C[/tex]

As per the statement:

The vertex form of the equation of a parabola is:

[tex]x = (y-2)^2+36[/tex]

Using identity rule:

[tex](a-b)^2 = a^2-2ab+b^2[/tex]

then;

[tex]x = y^2-4y+4+36[/tex]

⇒[tex]x = y^2-4y+40[/tex]

Therefore, the standard form of the equation is, [tex]x = y^2-4y+40[/tex]