Answer :
Area=Length x width
so you replace the words with numbers
103 1/8=12 1/2 × width
width=(103 1/8)÷(12 1/2)
width =8.25 ft
so you replace the words with numbers
103 1/8=12 1/2 × width
width=(103 1/8)÷(12 1/2)
width =8.25 ft
Since a rectangular patio is a rectangle, to solve this we are going to use the formula for the area of a rectangle: [tex] A=wl [/tex]
where
[tex] A [/tex] is the area of the rectangle
[tex] w [/tex] is the width of the rectangle
[tex] l [/tex] is the length of the rectangle
We know form our problem that the length of the rectangular patio is [tex] 12\frac{1}{2} [/tex] feet, so [tex] l=12\frac{1}{2} ft [/tex]. We also know that the area is [tex] 103\frac{1}{8} [/tex] square feet, so [tex] A=103\frac{1}{8} ft^2 [/tex]. Lets replace those values in our formula and solve for [tex] w [/tex]:
[tex] A=wl [/tex]
[tex] 103\frac{1}{8} ft^2=12\frac{1}{2}ftw [/tex]
[tex] \frac{103\frac{1}{8}ft^2}{12\frac{1}{2}ft} =w [/tex]
[tex] w=\frac{103\frac{1}{8}ft^2}{12\frac{1}{2}ft} [/tex]
[tex] w=8\frac{1}{4} ft=8.25ft [/tex]
We can conclude that the width of the rectangular patio is [tex] 8\frac{1}{4} [/tex] feet, or as a decimal, 8.25 feet.