Answer :
Basically this is a systems of equations question. We set up two equations, X is hamburgers Y is fries
8x + 5y = 24
6x + 2y = 16.60
then you solve for each to get your answer.
8x + 5y = 24
6x + 2y = 16.60
then you solve for each to get your answer.
Answer : The cost of hamburgers and fries is, $2.5 and $0.8
Step-by-step explanation :
Let the cost of hamburgers be, x and the cost of fries be, y.
Thus the two equation will be:
[tex]8x+5y=24[/tex] ...........(1)
[tex]6x+2y=16.60[/tex] .............(2)
Using substitution method:
From equation 1 we have to determine the value of 'y'.
[tex]8x+5y=24[/tex]
[tex]5y=24-8x[/tex]
[tex]y=\frac{24-8x}{5}[/tex] ........(3)
Now put equation 3 in 2, we get:
[tex]6x+2y=16.60[/tex]
[tex]6x+2\times (\frac{24-8x}{5})=16.60[/tex]
[tex]6x+(\frac{48-16x}{5})=16.60[/tex]
[tex]\frac{30x+48-16x}{5}=16.60[/tex]
[tex]30x+48-16x=83[/tex]
[tex]14x=35[/tex]
[tex]x=2.5[/tex]
Now put the value of x in equation 3, we get:
[tex]y=\frac{24-8x}{5}[/tex]
[tex]y=\frac{24-8\times 2.5}{5}[/tex]
[tex]y=\frac{24-20}{5}[/tex]
[tex]y=\frac{4}{5}[/tex]
[tex]y=0.8[/tex]
Thus, the cost of hamburgers and fries is, $2.5 and $0.8