Let the n-th term be called [tex]a_n[/tex]
We see that if we choose [tex]a_0=1,a_1=2[/tex] then the other numbers follow the pattern [tex]a_{n+2}=a_{n+1}\cdot a_n[/tex] (see :[tex]4=2*2,8=4*2[/tex])
Hence the sequence will be [tex]1,2,2,4,8,32,256, 8192, 2097152, 17179869184,\dots[/tex]