100 POINS PLEASE HELP ASAPP

Maz, Jake and Lou share £370.
The amount Maz and Jake get is in the ratio 2 : 3.
The amount Jake and Lou share is in the ratio 5 : 4.
How much does Lou get?



Answer :

Answer:
£120

Step-by-step explanation:

M       J        L

2        3        X

Y        5        4

3 and 5 are multiples of 15

So for the first row, multiply everything by 5, and multiply by 3 for the second row

M       J        L

10       15      X

Y        15      12

So now the ratio is

M       J        L

10       15      12

Total: 10 + 15 + 12 = 37

£370 / 37 = £10

£10 x 12 = £120

msm555

Answer:

£120

Step-by-step explanation:

Let's denote:

  • The amount Maz gets as [tex]\bold{x}[/tex],
  • The amount Jake gets as [tex]\bold{y}[/tex],
  • The amount Lou gets as [tex]\bold{z}[/tex].

Given:

The total amount they share is £370, so we have the equation:

[tex] \sf x + y + z = 370 \quad \cdots \quad (1)[/tex]

The amount Maz and Jake get is in the ratio 2:3, so:

[tex] \sf \dfrac{x}{y} = \dfrac{2}{3} \quad \cdots \quad (2)[/tex]

The amount Jake and Lou share is in the ratio 5:4, so:

[tex] \sf \dfrac{y}{z} = \dfrac{5}{4} \quad \cdots \quad (3)[/tex]

We can use equations (2) and (3) to express [tex]\bold{x}[/tex] and [tex]\bold{y}[/tex] in terms of [tex]\bold{z}[/tex], and then substitute these expressions into equation (1) to solve for [tex]\bold{z}[/tex].

From equation (2), we have:

[tex] \sf x = \dfrac{2}{3}y \quad \cdots \quad (4)[/tex]

From equation (3), we have:

[tex] \sf y = \dfrac{5}{4}z \quad \cdots \quad (5)[/tex]

Substitute equations (4) and (5) into equation (1):

[tex] \sf \dfrac{2}{3}y + y + z = 370[/tex]

[tex] \sf \dfrac{2}{3}\left(\dfrac{5}{4}z\right) + \dfrac{5}{4}z + z = 370[/tex]

[tex] \sf \dfrac{5}{6}z + \dfrac{5}{4}z + z = 370[/tex]

To add fractions, we need a common denominator, which is 12 in this case:

[tex] \sf \dfrac{ 5 \cdot 2\cdot z + 5 \cdot 3\cdot z + 12\cdot z }{12} = 370[/tex]

[tex] \sf \dfrac{ 10z + 15z + 12z }{12} = 370[/tex]

[tex] \sf \dfrac{37}{12}z = 370[/tex]

Now, solve for [tex]\bold{z}[/tex]:

[tex] \sf z = \dfrac{370 \times 12}{37}[/tex]

[tex] \sf z = \dfrac{4440}{37}[/tex]

[tex] \sf z \approx 120[/tex]

Therefore, Lou gets approximately £120.