The count in a bacteria culture was 700 after 10 minutes and 1500 after 30 minutes. Assuming the count grows exponentially,

What was the initial size of the culture?

Find the doubling period.

Find the population after 115 minutes.

When will the population reach 10000.
You may enter the exact value or round to 2 decimal places.



Answer :

msm555

Answer:

Initial size of the culture: [tex]\sf \bold{478.19} [/tex] bacteria

Doubling period:  [tex]\sf 18.19 [/tex] minutes

Population after 115 minutes: [tex]\sf \bold{38265.94} [/tex] bacteria

The population will reach 10000 [tex]\sf \bold{79.78} [/tex] minutes after the initial time

Step-by-step explanation:

To solve these questions, we can use the exponential growth formula for bacterial count, which is modeled as:

[tex]\large\boxed{\boxed{\sf N(t) = N_0 e^{kt} }[/tex]

Where:

  • [tex]\sf N(t) [/tex] is the population size at time [tex]\sf t [/tex],
  • [tex]\sf N_0 [/tex] is the initial population size,
  • [tex]\sf k [/tex] is the growth rate constant,
  • [tex]\sf e [/tex] is the base of the natural logarithm.

Finding the initial size of the culture [tex]\sf (N_0) [/tex]:

Given:

  • [tex]\sf N(10) = 700 [/tex]
  • [tex]\sf N(30) = 1500 [/tex]

Using [tex]\sf N(t) = N_0 e^{kt} [/tex], we have two equations:

  • [tex]\sf 700 = N_0 e^{10k} [/tex]
  • [tex]\sf 1500 = N_0 e^{30k} [/tex]

Divide equation (2) by equation (1):

[tex]\sf \dfrac{1500}{700} = \dfrac{N_0 e^{30k}}{N_0 e^{10k}} [/tex]

[tex]\sf \dfrac{1500}{700} = e^{30k - 10k} [/tex]

[tex]\sf \dfrac{1500}{700} = e^{20k} [/tex]

Taking natural logarithm on both sides:

[tex]\sf \ln\left(\dfrac{1500}{700}\right) = 20k [/tex]

[tex]\sf \ln\left(\dfrac{1500}{700}\right) = 20k [/tex]

[tex]\sf k = \dfrac{\ln\left(\dfrac{1500}{700}\right)}{20} [/tex]

[tex]\sf k \approx \dfrac{\ln(2.1429)}{20} [/tex]

[tex]\sf k \approx \dfrac{0.762140052}{20} [/tex]

[tex]\sf k \approx 0.0381070026 [/tex]

Now substitute [tex]\sf k [/tex] back to find [tex]\sf N_0 [/tex]:

[tex]\sf 700 = N_0 e^{10 \times  0.0381070026} [/tex]

[tex]\sf 700 = N_0 e^{38.1070026} [/tex]

[tex]\sf N_0 = \dfrac{700}{e^{38.1070026}} [/tex]

[tex]\sf N_0 \approx \dfrac{700}{1.463850109} [/tex]

[tex]\sf N_0 \approx 478.1910357 [/tex]

[tex]\sf N_0 \approx 478.19\textsf{(in 2 decimal places)} [/tex]

Therefore, the initial size of the culture ( [tex]\sf N_0 [/tex] ) is approximately [tex]\sf \bold{478.19} [/tex] bacteria.

Finding the doubling period:

The doubling period [tex]\sf T_d [/tex] is related to [tex]\sf k [/tex] in exponential growth. For exponential growth, the doubling period is given by:

[tex]\sf T_d = \dfrac{\ln(2)}{k} [/tex]

[tex]\sf T_d = \dfrac{\ln(2)}{ 0.0381070026} [/tex]

[tex]\sf T_d \approx \dfrac{0.6931471806}{0.03819} [/tex]

[tex]\sf T_d \approx 18.18949624 \textsf{ minutes} [/tex]

[tex]\sf T_d \approx 18.19 \textsf{ minutes (in 2 decimal places)} [/tex]

Therefore, the doubling period is approximately [tex]\sf 18.19 [/tex] minutes.

Finding the population after 115 minutes

Using [tex]\sf N(t) = N_0 e^{kt} [/tex] with [tex]\sf t = 115 [/tex] minutes:

[tex]\sf N(115) = N_0 e^{0.0381070026 \times 115} [/tex]

[tex]\sf N(115) \approx 478.1910357 \times e^{4.382305299} [/tex]

[tex]\sf N(115) \approx 477.28 \times 80.02229625 [/tex]

[tex]\sf N(115) \approx 38265.94472 [/tex]

[tex]\sf N(115) \approx 38265.94\textsf{(in 2 decimal places)} [/tex]

Therefore, the population after 115 minutes is approximately [tex]\sf \bold{38265.94} [/tex] bacteria.

Finding when the population will reach 10000:

We want to find [tex]\sf t [/tex] when [tex]\sf N(t) = 10000 [/tex]:

[tex]\sf 10000 = N_0 e^{0.0381070026t} [/tex]

[tex]\sf \dfrac{10000}{N_0} = e^{0.0381070026t} [/tex]

[tex]\sf \ln\left(\dfrac{10000}{N_0}\right) = 0.0381070026t [/tex]

[tex]\sf t = \dfrac{\ln\left(\dfrac{10000}{478.1910357}\right)}{0.0381070026} [/tex]

[tex]\sf t \approx \dfrac{\ln(20.91214442)}{0.0381070026} [/tex]

[tex]\sf t \approx \dfrac{3.040330063}{0.0381070026}[/tex]

[tex]\sf t \approx 79.78402539 \textsf{ minutes} [/tex]

[tex]\sf t \approx 79.78 \textsf{ minutes (in 2 decimal places)} [/tex]

Therefore, the population will reach 10000 bacteria approximately [tex]\sf \bold{79.78} [/tex] minutes after the initial time [tex]\sf t = 0 [/tex].