Answered

003 (part 1 of 2) 10.0 points
A racing car travels on a circular track of
radius 202 m, moving with a constant linear
speed of 50 m/s.
Find its angular speed.
Answer in units of rad/s.
004 (part 2 of 2) 10.0 points
Find the magnitude of its acceleration.
Answer in units of m/s².



Answer :

Let's address each part of the question step-by-step.

### Part 1: Finding the Angular Speed

To find the angular speed ([tex]\(\omega\)[/tex]) of an object moving in a circular path, we can use the following formula:

[tex]\[ \omega = \frac{v}{r} \][/tex]

where:
- [tex]\( v \)[/tex] is the linear speed,
- [tex]\( r \)[/tex] is the radius of the circular track.

Given:
- The radius ([tex]\( r \)[/tex]) is 202 meters,
- The linear speed ([tex]\( v \)[/tex]) is 50 meters per second.

Plugging in these values, we get:

[tex]\[ \omega = \frac{50 \, \text{m/s}}{202 \, \text{m}} \][/tex]

[tex]\[ \omega = 0.24752 \, \text{rad/s} \][/tex]

Thus, the angular speed is approximately [tex]\( 0.24752 \, \text{rad/s} \)[/tex].

### Part 2: Finding the Magnitude of the Acceleration

To find the magnitude of the centripetal (radial) acceleration ([tex]\( a \)[/tex]), we use the formula:

[tex]\[ a = \frac{v^2}{r} \][/tex]

where:
- [tex]\( v \)[/tex] is the linear speed,
- [tex]\( r \)[/tex] is the radius of the circular track.

Given:
- The radius ([tex]\( r \)[/tex]) is 202 meters,
- The linear speed ([tex]\( v \)[/tex]) is 50 meters per second.

Plugging in these values, we get:

[tex]\[ a = \frac{(50 \, \text{m/s})^2}{202 \, \text{m}} \][/tex]

[tex]\[ a = \frac{2500 \, \text{m}^2/\text{s}^2}{202 \, \text{m}} \][/tex]

[tex]\[ a = 12.3762 \, \text{m/s}^2 \][/tex]

Thus, the magnitude of the acceleration is approximately [tex]\( 12.3762 \, \text{m/s}^2 \)[/tex].

### Summary

- Angular speed: [tex]\( 0.24752 \, \text{rad/s} \)[/tex]
- Magnitude of acceleration: [tex]\( 12.3762 \, \text{m/s}^2 \)[/tex]