Answer :

To find the radius of a circle when given its circumference, you can use the formula for the circumference of a circle:

[tex]\[ C = 2 \pi r \][/tex]

where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius,
- [tex]\( \pi \)[/tex] (pi) is approximately 3.14159.

Given that the circumference [tex]\( C \)[/tex] is 67 meters, we can rearrange the formula to solve for the radius [tex]\( r \)[/tex]:

[tex]\[ r = \frac{C}{2 \pi} \][/tex]

Now, let's substitute the circumference value into the formula:

[tex]\[ r = \frac{67}{2 \pi} \][/tex]

We proceed by calculating the numerical value:

[tex]\[ r = \frac{67}{2 \times 3.14159} \][/tex]

First, calculate the denominator:

[tex]\[ 2 \times 3.14159 = 6.28318 \][/tex]

Now, divide the circumference by this value:

[tex]\[ r = \frac{67}{6.28318} \approx 10.67 \][/tex]

Therefore, the radius of the circle is approximately 10.67 meters.