Answer :
Sure, let's go through the steps to find the area of a circle when given the diameter.
1. Identify the diameter:
The diameter of the circle is given as 5 cm.
2. Calculate the radius:
The radius (r) is half of the diameter. So:
[tex]\[ r = \frac{\text{Diameter}}{2} \][/tex]
Substituting the diameter:
[tex]\[ r = \frac{5 \text{ cm}}{2} = 2.5 \text{ cm} \][/tex]
3. Use the formula for the area of a circle:
The formula to calculate the area (A) of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
4. Substitute the radius into the formula:
[tex]\[ A = \pi (2.5 \text{ cm})^2 \][/tex]
5. Perform the calculation:
First, square the radius:
[tex]\[ (2.5 \text{ cm})^2 = 6.25 \text{ cm}^2 \][/tex]
Now, multiply by π (approximately 3.14159):
[tex]\[ A \approx 3.14159 \times 6.25 \text{ cm}^2 = 19.6349375 \text{ cm}^2 \][/tex]
6. Round the area to the nearest whole number:
[tex]\[ A \approx \text{round}(19.6349375) = 20 \text{ cm}^2 \][/tex]
So, the area of the circle, rounded to the nearest whole number, is 20 square centimeters.
1. Identify the diameter:
The diameter of the circle is given as 5 cm.
2. Calculate the radius:
The radius (r) is half of the diameter. So:
[tex]\[ r = \frac{\text{Diameter}}{2} \][/tex]
Substituting the diameter:
[tex]\[ r = \frac{5 \text{ cm}}{2} = 2.5 \text{ cm} \][/tex]
3. Use the formula for the area of a circle:
The formula to calculate the area (A) of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
4. Substitute the radius into the formula:
[tex]\[ A = \pi (2.5 \text{ cm})^2 \][/tex]
5. Perform the calculation:
First, square the radius:
[tex]\[ (2.5 \text{ cm})^2 = 6.25 \text{ cm}^2 \][/tex]
Now, multiply by π (approximately 3.14159):
[tex]\[ A \approx 3.14159 \times 6.25 \text{ cm}^2 = 19.6349375 \text{ cm}^2 \][/tex]
6. Round the area to the nearest whole number:
[tex]\[ A \approx \text{round}(19.6349375) = 20 \text{ cm}^2 \][/tex]
So, the area of the circle, rounded to the nearest whole number, is 20 square centimeters.