Answer :
Certainly! To calculate the current in a circuit, we can use Ohm's Law. Ohm's Law states that:
[tex]\[ I = \frac{V}{R} \][/tex]
where:
- [tex]\( I \)[/tex] is the current (in amperes, A),
- [tex]\( V \)[/tex] is the voltage (in volts, V),
- [tex]\( R \)[/tex] is the resistance (in ohms, Ω).
Given values:
- Voltage ([tex]\( V \)[/tex]) = 60 volts (V),
- Resistance ([tex]\( R \)[/tex]) = 5 ohms (Ω).
Let's plug these values into the formula:
[tex]\[ I = \frac{V}{R} \][/tex]
Substitute the given values:
[tex]\[ I = \frac{60\ \text{V}}{5\ \text{Ω}} \][/tex]
Now, perform the division:
[tex]\[ I = 12\ \text{A} \][/tex]
Therefore, the current in the circuit is 12 amperes (A).
[tex]\[ I = \frac{V}{R} \][/tex]
where:
- [tex]\( I \)[/tex] is the current (in amperes, A),
- [tex]\( V \)[/tex] is the voltage (in volts, V),
- [tex]\( R \)[/tex] is the resistance (in ohms, Ω).
Given values:
- Voltage ([tex]\( V \)[/tex]) = 60 volts (V),
- Resistance ([tex]\( R \)[/tex]) = 5 ohms (Ω).
Let's plug these values into the formula:
[tex]\[ I = \frac{V}{R} \][/tex]
Substitute the given values:
[tex]\[ I = \frac{60\ \text{V}}{5\ \text{Ω}} \][/tex]
Now, perform the division:
[tex]\[ I = 12\ \text{A} \][/tex]
Therefore, the current in the circuit is 12 amperes (A).