Answer :

Answer:

[tex]-4x^2-3x-5[/tex]

Step-by-step explanation:

Recall the basics of arithmetic combinations of functions, or how to add, subtract, multiply and divide functions. For any two distinct functions f(x) and g(x), a function notation of,

[tex](f+g)(x) = f(x) + g(x), \\\\(f-g)(x) = f(x)-g(x),\\\\ (f\cdot g)(x)=f(x)\cdot g(x),\\\\(\dfrac{f}{g} )(x)=f(x)\div g(x).[/tex]

In this problem we utilize the subtraction method,

[tex](f-g)(x)=f(x)-g(x)=(-3x-5)-(4x^2)\\\\\implies-3x-5-4x^2\:or \: -4x^2-3x-5[/tex]