Answer :

To find the area of a circle, we use the formula:
[tex]\[ A = \pi r^2 \][/tex]

Where:
- [tex]\( A \)[/tex] is the area.
- [tex]\( r \)[/tex] is the radius of the circle.
- [tex]\( \pi \)[/tex] (pi) is approximately 3.14159.

Given that the radius [tex]\( r \)[/tex] is 28 units, we will plug this value into the formula.

1. Substitute the radius value into the formula:
[tex]\[ A = \pi \times (28)^2 \][/tex]

2. Next, we calculate [tex]\( (28)^2 \)[/tex]:
[tex]\[ 28 \times 28 = 784 \][/tex]

3. Now, we multiply this result by [tex]\( \pi \)[/tex]:
[tex]\[ A = \pi \times 784 \][/tex]

4. Using the value of [tex]\( \pi \approx 3.14159 \)[/tex], we get:
[tex]\[ A \approx 3.14159 \times 784 \][/tex]

5. Performing the multiplication, the area [tex]\( A \)[/tex] is approximately:
[tex]\[ A \approx 2463.0086404143976 \][/tex]

Therefore, the area of a circle with a radius of 28 units is approximately [tex]\( 2463.0086404143976 \)[/tex] square units.