Which number produces a rational number when multiplied by 0.5?

A. [tex]\(-1.73205089 \ldots\)[/tex]

B. [tex]\(\sqrt{3}\)[/tex]

C. [tex]\(0.54732814 \ldots\)[/tex]

D. [tex]\(\frac{1}{3}\)[/tex]



Answer :

To determine which number produces a rational number when multiplied by 0.5, we need to check each option individually and determine whether the result is rational. A rational number can be expressed as a fraction of two integers.

Let's analyze each option:

A. [tex]\(-1.73205089 \ldots\)[/tex]

If we multiply [tex]\(-1.73205089 \ldots\)[/tex] by 0.5:
[tex]\[ -1.73205089 \ldots \times 0.5 = -0.866025445 \ldots \][/tex]
This result is a non-repeating, non-terminating decimal, thus it is an irrational number.

B. [tex]\(\sqrt{3}\)[/tex]

If we multiply [tex]\(\sqrt{3}\)[/tex] by 0.5:
[tex]\[ \sqrt{3} \times 0.5 = \frac{\sqrt{3}}{2} \][/tex]
Since [tex]\(\sqrt{3}\)[/tex] is irrational, [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is also irrational.

C. [tex]\(0.54732814 \ldots\)[/tex]

If we multiply [tex]\(0.54732814 \ldots\)[/tex] by 0.5:
[tex]\[ 0.54732814 \ldots \times 0.5 = 0.27366407 \ldots \][/tex]
This result is a non-repeating, non-terminating decimal, thus it is an irrational number.

D. [tex]\(\frac{1}{3}\)[/tex]

If we multiply [tex]\(\frac{1}{3}\)[/tex] by 0.5:
[tex]\[ \frac{1}{3} \times 0.5 = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} \][/tex]
The fraction [tex]\(\frac{1}{6}\)[/tex] is a ratio of two integers (1 and 6), so it is a rational number.

After evaluating each option, we find that the number which produces a rational number when multiplied by 0.5 is:

[tex]\[ \boxed{D. \frac{1}{3}} \][/tex]