Answer :
Certainly! Let's prove that [tex]\( K \cdot E = \frac{1}{2} m v^2 \)[/tex] under the context given by the problem. Assume we are dealing with kinetic energy and some constants related to it.
1. Understanding the Equation:
- [tex]\( K \)[/tex] is a constant that we need to identify.
- [tex]\( E \)[/tex] is an expression involving mass ([tex]\( m \)[/tex]) and velocity ([tex]\( v \)[/tex]).
- The goal is to show that the product [tex]\( K \cdot E \)[/tex] equals the kinetic energy, represented by [tex]\( \frac{1}{2} m v^2 \)[/tex].
2. Expressing Kinetic Energy ([tex]\( KE \)[/tex]):
The kinetic energy [tex]\( KE \)[/tex] is given by
[tex]\[ KE = \frac{1}{2} m v^2, \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
3. Identifying [tex]\( K \)[/tex] and [tex]\( E \)[/tex]:
By inspection, we notice that the factor [tex]\(\frac{1}{2}\)[/tex] is part of the kinetic energy formula. Let’s assign this as:
[tex]\[ K = \frac{1}{2}. \][/tex]
4. Determining [tex]\( E \)[/tex]:
Since we defined [tex]\( K \)[/tex] as [tex]\( \frac{1}{2} \)[/tex], we need to express [tex]\( E \)[/tex] such that their product yields the kinetic energy. Given that [tex]\( \frac{1}{2} \)[/tex] should multiply with [tex]\( E \)[/tex] to result in [tex]\( \frac{1}{2} m v^2 \)[/tex], we can infer that:
[tex]\[ E = m v^2. \][/tex]
5. Calculating the Product [tex]\( K \cdot E \)[/tex]:
Now, let’s multiply [tex]\( K \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ K \cdot E = \left(\frac{1}{2}\right) \cdot (m v^2). \][/tex]
6. Simplifying the Expression:
Performing the multiplication, we get:
[tex]\[ K \cdot E = \frac{1}{2} m v^2. \][/tex]
Thus, we have shown that [tex]\( K \cdot E = \frac{1}{2} m v^2 \)[/tex], which confirms the equality we intended to prove. Therefore, under the given conditions and definitions, the product [tex]\( K \cdot E \)[/tex] indeed equals the kinetic energy expression [tex]\( \frac{1}{2} m v^2 \)[/tex].
1. Understanding the Equation:
- [tex]\( K \)[/tex] is a constant that we need to identify.
- [tex]\( E \)[/tex] is an expression involving mass ([tex]\( m \)[/tex]) and velocity ([tex]\( v \)[/tex]).
- The goal is to show that the product [tex]\( K \cdot E \)[/tex] equals the kinetic energy, represented by [tex]\( \frac{1}{2} m v^2 \)[/tex].
2. Expressing Kinetic Energy ([tex]\( KE \)[/tex]):
The kinetic energy [tex]\( KE \)[/tex] is given by
[tex]\[ KE = \frac{1}{2} m v^2, \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
3. Identifying [tex]\( K \)[/tex] and [tex]\( E \)[/tex]:
By inspection, we notice that the factor [tex]\(\frac{1}{2}\)[/tex] is part of the kinetic energy formula. Let’s assign this as:
[tex]\[ K = \frac{1}{2}. \][/tex]
4. Determining [tex]\( E \)[/tex]:
Since we defined [tex]\( K \)[/tex] as [tex]\( \frac{1}{2} \)[/tex], we need to express [tex]\( E \)[/tex] such that their product yields the kinetic energy. Given that [tex]\( \frac{1}{2} \)[/tex] should multiply with [tex]\( E \)[/tex] to result in [tex]\( \frac{1}{2} m v^2 \)[/tex], we can infer that:
[tex]\[ E = m v^2. \][/tex]
5. Calculating the Product [tex]\( K \cdot E \)[/tex]:
Now, let’s multiply [tex]\( K \)[/tex] and [tex]\( E \)[/tex]:
[tex]\[ K \cdot E = \left(\frac{1}{2}\right) \cdot (m v^2). \][/tex]
6. Simplifying the Expression:
Performing the multiplication, we get:
[tex]\[ K \cdot E = \frac{1}{2} m v^2. \][/tex]
Thus, we have shown that [tex]\( K \cdot E = \frac{1}{2} m v^2 \)[/tex], which confirms the equality we intended to prove. Therefore, under the given conditions and definitions, the product [tex]\( K \cdot E \)[/tex] indeed equals the kinetic energy expression [tex]\( \frac{1}{2} m v^2 \)[/tex].