A forklift raises a crate weighing [tex]\( 8.35 \times 10^2 \)[/tex] newtons to a height of 60 meters. What amount of work does the forklift do?

A. [tex]\( 25 \times 10^3 \)[/tex] joules
B. [tex]\( 50 \times 10^3 \)[/tex] joules
C. [tex]\( 24 \times 10^4 \)[/tex] joules
D. [tex]\( 4.9 \times 10^4 \)[/tex] joules



Answer :

To find the amount of work done by lifting a crate, we can use the formula for work in physics, which is:

[tex]\[ \text{Work} = \text{force} \times \text{distance} \][/tex]

In this case, the force is the weight of the crate, and the distance is the height it is lifted.

Given:
- The weight of the crate: [tex]\( 8.35 \times 10^2 \)[/tex] newtons
- The height: 60 meters

We can substitute these values into the formula:

[tex]\[ \text{Work} = (8.35 \times 10^2 \, \text{N}) \times 60 \, \text{m} \][/tex]

[tex]\[ \text{Work} = 50100 \, \text{joules} \][/tex]

This means the work done by the forklift is 50100 joules.

Now, we need to compare this result to the given options:
A. [tex]\( 25 \times 10^3 \)[/tex] joules [tex]\( = 25000 \)[/tex] joules
B. [tex]\( 50 \times 10^3 \)[/tex] joutes [tex]\( = 50000 \)[/tex] joules
C. [tex]\( 24 \times 10^4 \)[/tex] pules [tex]\( = 240000 \)[/tex] joules
D. [tex]\( 4.9 \times 10^4 \)[/tex] joutes [tex]\( = 49000 \)[/tex] joules

The value closest to 50100 joules is 49000 joules.

Thus, the correct option is:

D. [tex]\( 4.9 \times 10^4 \)[/tex] joutes