Solve for [tex]\( x \)[/tex]:

[tex]\[ 3(x + 1) = 2(x - 1) \][/tex]

A. [tex]\(-5\)[/tex]
B. [tex]\(-4\)[/tex]
C. [tex]\(-2\)[/tex]
D. [tex]\(-1\)[/tex]



Answer :

To solve the equation [tex]\(3(x + 1) = 2(x - 1)\)[/tex], let's go through the steps to isolate and solve for [tex]\(x\)[/tex].

1. Begin by distributing the constants on both sides of the equation:
[tex]\[ 3(x + 1) = 3 \cdot x + 3 \cdot 1 = 3x + 3 \][/tex]
[tex]\[ 2(x - 1) = 2 \cdot x - 2 \cdot 1 = 2x - 2 \][/tex]

2. Now, the equation looks like this:
[tex]\[ 3x + 3 = 2x - 2 \][/tex]

3. To isolate [tex]\(x\)[/tex], we need to get all terms involving [tex]\(x\)[/tex] on one side of the equation and the constant terms on the other side. First, subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ 3x - 2x + 3 = -2 \][/tex]
[tex]\[ x + 3 = -2 \][/tex]

4. Next, subtract 3 from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x + 3 - 3 = -2 - 3 \][/tex]
[tex]\[ x = -5 \][/tex]

So, the solution for [tex]\(x\)[/tex] is [tex]\(-5\)[/tex].

Among the given choices:
[tex]\[ -5, -4, -2, -1 \][/tex]
The correct answer is [tex]\(-5\)[/tex].

Other Questions