Select the correct answer from the drop-down menu.

Consider each table of values.

[tex]\[
\begin{array}{|c|c|}
\hline \multicolumn{2}{|c|}{\text{Function } f} \\
\hline x & f(x) \\
\hline 1 & 5 \\
\hline 2 & 11 \\
\hline 3 & 29 \\
\hline 4 & 83 \\
\hline
\end{array}
\][/tex]
[tex]\[
\begin{array}{|c|c|}
\hline \multicolumn{2}{|c|}{\text{Function } g} \\
\hline x & g(x) \\
\hline 3 & 17 \\
\hline 5 & 25 \\
\hline 7 & 33 \\
\hline 9 & 41 \\
\hline
\end{array}
\][/tex]
[tex]\[
\begin{array}{|c|c|}
\hline \multicolumn{2}{|c|}{\text{Function } h} \\
\hline x & h(x) \\
\hline 2 & 8.8 \\
\hline 4 & 15.6 \\
\hline 6 & 22.4 \\
\hline 8 & 29.2 \\
\hline
\end{array}
\][/tex]

Of the three functions, [tex]$\square$[/tex] represent linear relationships.



Answer :

To determine which of the three functions [tex]\( f(x) \)[/tex], [tex]\( g(x) \)[/tex], and [tex]\( h(x) \)[/tex] represent linear relationships, we need to analyze their values and check for a constant rate of change (slope).

### Function [tex]\( f(x) \)[/tex]

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 1 & 5 \\ \hline 2 & 11 \\ \hline 3 & 29 \\ \hline 4 & 83 \\ \hline \end{array} \][/tex]

To check for linearity, we look at the differences between consecutive [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex] values:

For [tex]\( x \)[/tex]:
[tex]\[ \Delta x = 1 - 1 = 1, \quad 2 - 1 = 1, \quad 3 - 2 = 1, \quad 4 - 3 = 1 \][/tex]

For [tex]\( f(x) \)[/tex]:
[tex]\[ \Delta f(x) = 11 - 5 = 6, \quad 29 - 11 = 18, \quad 83 - 29 = 54 \][/tex]

The differences are not consistent, indicating that [tex]\( f(x) \)[/tex] is not linear.

### Function [tex]\( g(x) \)[/tex]

[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline 3 & 17 \\ \hline 5 & 25 \\ \hline 7 & 33 \\ \hline 9 & 41 \\ \hline \end{array} \][/tex]

For [tex]\( x \)[/tex]:
[tex]\[ \Delta x = 5 - 3 = 2, \quad 7 - 5 = 2, \quad 9 - 7 = 2 \][/tex]

For [tex]\( g(x) \)[/tex]:
[tex]\[ \Delta g(x) = 25 - 17 = 8, \quad 33 - 25 = 8, \quad 41 - 33 = 8 \][/tex]

The differences are consistent, indicating that [tex]\( g(x) \)[/tex] is linear.

### Function [tex]\( h(x) \)[/tex]

[tex]\[ \begin{array}{|c|c|} \hline x & h(x) \\ \hline 2 & 8.8 \\ \hline 4 & 15.6 \\ \hline 6 & 22.4 \\ \hline 8 & 29.2 \\ \hline \end{array} \][/tex]

For [tex]\( x \)[/tex]:
[tex]\[ \Delta x = 4 - 2 = 2, \quad 6 - 4 = 2, \quad 8 - 6 = 2 \][/tex]

For [tex]\( h(x) \)[/tex]:
[tex]\[ \Delta h(x) = 15.6 - 8.8 = 6.8, \quad 22.4 - 15.6 = 6.8, \quad 29.2 - 22.4 = 6.8 \][/tex]

The differences are not integer multiples of a common value;

Therefore, the only function that represents a linear relationship is:

[tex]\(\boxed{g(x)}\)[/tex]