Which function has only one [tex]\( x \)[/tex]-intercept at [tex]\((-6,0)\)[/tex]?

A. [tex]\( f(x) = x(x-6) \)[/tex]

B. [tex]\( f(x) = (x-6)(x-6) \)[/tex]

C. [tex]\( f(x) = (x+6)(x-6) \)[/tex]

D. [tex]\( f(x) = (x+6)(x+6) \)[/tex]



Answer :

To determine which function has only one [tex]\( x \)[/tex]-intercept at the point [tex]\((-6,0)\)[/tex], let’s analyze each given function by setting them equal to zero and solving for [tex]\( x \)[/tex].

### Function 1: [tex]\( f(x) = x(x - 6) \)[/tex]

Setting [tex]\( f(x) \)[/tex] to zero:
[tex]\[ x(x - 6) = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 6 \][/tex]

This function has two [tex]\( x \)[/tex]-intercepts at [tex]\( (0,0) \)[/tex] and [tex]\( (6,0) \)[/tex].

### Function 2: [tex]\( f(x) = (x - 6)(x - 6) \)[/tex]

Setting [tex]\( f(x) \)[/tex] to zero:
[tex]\[ (x - 6)(x - 6) = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 6 \][/tex]

This function has one [tex]\( x \)[/tex]-intercept at [tex]\( (6,0) \)[/tex].

### Function 3: [tex]\( f(x) = (x + 6)(x - 6) \)[/tex]

Setting [tex]\( f(x) \)[/tex] to zero:
[tex]\[ (x + 6)(x - 6) = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -6 \quad \text{or} \quad x = 6 \][/tex]

This function has two [tex]\( x \)[/tex]-intercepts at [tex]\( (-6,0) \)[/tex] and [tex]\( (6,0) \)[/tex].

### Function 4: [tex]\( f(x) = (x + 6)(x + 6) \)[/tex]

Setting [tex]\( f(x) \)[/tex] to zero:
[tex]\[ (x + 6)(x + 6) = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -6 \][/tex]

This function has one [tex]\( x \)[/tex]-intercept at [tex]\( (-6,0) \)[/tex].

From the analysis:
- Function 1 has intercepts at [tex]\( (0,0) \)[/tex] and [tex]\( (6,0) \)[/tex]
- Function 2 has an intercept at [tex]\( (6,0) \)[/tex]
- Function 3 has intercepts at [tex]\( (-6,0) \)[/tex] and [tex]\( (6,0) \)[/tex]
- Function 4 has an intercept at [tex]\( (-6,0) \)[/tex]

Therefore, the function that has only one [tex]\( x \)[/tex]-intercept at [tex]\( (-6,0) \)[/tex] is:

[tex]\[ \boxed{f(x) = (x + 6)(x + 6)} \][/tex]

Hence, the answer is:

[tex]\[ \boxed{4} \][/tex]