The hypotenuse of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle measures [tex]\(10 \sqrt{5}\)[/tex] in.

What is the length of one leg of the triangle?

A. [tex]\(5 \sqrt{5}\)[/tex]

B. [tex]\(5 \sqrt{10}\)[/tex]

C. [tex]\(10 \sqrt{5}\)[/tex]

D. [tex]\(10 \sqrt{10}\)[/tex]



Answer :

To find the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle when the hypotenuse is given, we use the properties of this type of triangle. In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the legs are equal in length and the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times longer than each leg.

Given:
- Hypotenuse = [tex]\(10 \sqrt{5}\)[/tex] inches

Step-by-step solution:
1. Identify the relationship in a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle:
[tex]\[ \text{leg} = \frac{\text{hypotenuse}}{\sqrt{2}} \][/tex]

2. Substitute the given hypotenuse:
[tex]\[ \text{leg} = \frac{10 \sqrt{5}}{\sqrt{2}} \][/tex]

3. Simplify the expression:
[tex]\[ \frac{10 \sqrt{5}}{\sqrt{2}} = \frac{10 \sqrt{5} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{10 \sqrt{10}}{2} = 5 \sqrt{10} \][/tex]

4. Thus, the length of one leg of the triangle is:
[tex]\[ 5 \sqrt{10} \][/tex]

Therefore, the correct answer is [tex]\(5 \sqrt{10}\)[/tex].