Answered

What is the value of this expression when [tex]\(a=7\)[/tex] and [tex]\(b=-4\)[/tex]? [tex]\(\frac{|2a|-8}{3}\)[/tex]

A. -6
B. [tex]\(-3 \frac{1}{3}\)[/tex]
C. [tex]\(3 \frac{1}{3}\)[/tex]
D. 6



Answer :

To evaluate the expression [tex]\(\frac{|2a| - 8}{3}\)[/tex] when [tex]\(a = 7\)[/tex] and [tex]\(b = -4\)[/tex], follow these steps:

1. Substitute the value of [tex]\(a\)[/tex] into the expression:

[tex]\[ |2a| = |2 \cdot 7| \][/tex]

2. Calculate the absolute value:

[tex]\[ |14| = 14 \][/tex]

3. Subtract 8 from the result:

[tex]\[ 14 - 8 = 6 \][/tex]

4. Divide the result by 3:

[tex]\[ \frac{6}{3} = 2.0 \][/tex]

Thus, the value of the expression [tex]\(\frac{|2a|-8}{3}\)[/tex] when [tex]\(a = 7\)[/tex] and [tex]\(b = -4\)[/tex] is [tex]\(2.0\)[/tex].

Therefore, the correct answer is not listed among the options provided.