Triangle PQR has vertices [tex]\( P(-2, 6) \)[/tex], [tex]\( Q(-8, 4) \)[/tex], and [tex]\( R(1, -2) \)[/tex]. It is translated according to the rule [tex]\((x, y) \rightarrow (x-2, y-16)\)[/tex].

What is the [tex]\( y \)[/tex]-value of [tex]\( P^{\prime} \)[/tex]?

A. [tex]\(-18\)[/tex]
B. [tex]\(-15\)[/tex]
C. [tex]\(-12\)[/tex]
D. [tex]\(-10\)[/tex]



Answer :

To solve this problem, we need to apply the given translation rule to point [tex]\( P \)[/tex] in triangle [tex]\( PQR \)[/tex]. The coordinates of point [tex]\( P \)[/tex] are [tex]\((-2, 6)\)[/tex].

According to the translation rule [tex]\((x, y) \rightarrow (x-2, y-16)\)[/tex], we will translate the coordinates of point [tex]\( P \)[/tex] as follows:

1. x-coordinate:
[tex]\[ x_{\text{new}} = x_{\text{original}} - 2 \][/tex]
For [tex]\( P(-2,6) \)[/tex]:
[tex]\[ x' = -2 - 2 = -4 \][/tex]

2. y-coordinate:
[tex]\[ y_{\text{new}} = y_{\text{original}} - 16 \][/tex]
For [tex]\( P(-2,6) \)[/tex]:
[tex]\[ y' = 6 - 16 = -10 \][/tex]

Thus, the new coordinates of point [tex]\( P \)[/tex] after applying the translation are [tex]\((-4, -10)\)[/tex].

Therefore, the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex] is:
[tex]\[ \boxed{-10} \][/tex]