If [tex]\( f(x) = x^2 \)[/tex], which equation represents function [tex]\( g \)[/tex]?

A. [tex]\( g(x) = f(2x) \)[/tex]
B. [tex]\( g(x) = f(4x) \)[/tex]
C. [tex]\( g(x) = 2f(x) \)[/tex]
D. [tex]\( g(x) = f\left(\frac{1}{2}x\right) \)[/tex]



Answer :

We are given the function [tex]\( f(x) = x^2 \)[/tex] and need to determine which of the following options correctly represents the function [tex]\( g \)[/tex]:

A. [tex]\( g(x) = f(2x) \)[/tex]

B. [tex]\( g(x) = f(4x) \)[/tex]

C. [tex]\( g(x) = 2f(x) \)[/tex]

D. [tex]\( g(x) = f\left(\frac{1}{2}x\right) \)[/tex]

To solve this, let's examine each option individually:

### Option A: [tex]\( g(x) = f(2x) \)[/tex]

First, we replace [tex]\( 2x \)[/tex] in the function [tex]\( f \)[/tex]:
[tex]\[ g(x) = (2x)^2 = 4x^2 \][/tex]

### Option B: [tex]\( g(x) = f(4x) \)[/tex]

Next, we replace [tex]\( 4x \)[/tex] in the function [tex]\( f \)[/tex]:
[tex]\[ g(x) = (4x)^2 = 16x^2 \][/tex]

### Option C: [tex]\( g(x) = 2f(x) \)[/tex]

We plug [tex]\( x \)[/tex] into the function [tex]\( f \)[/tex] and multiply the result by 2:
[tex]\[ g(x) = 2 \cdot x^2 = 2x^2 \][/tex]

### Option D: [tex]\( g(x) = f\left(\frac{1}{2}x\right) \)[/tex]

Finally, we replace [tex]\( \frac{1}{2}x \)[/tex] in the function [tex]\( f \)[/tex]:
[tex]\[ g(x) = \left(\frac{1}{2}x\right)^2 = \frac{1}{4}x^2 \][/tex]

After examining all the options:

- Option A results in [tex]\( g(x) = 4x^2 \)[/tex].
- Option B results in [tex]\( g(x) = 16x^2 \)[/tex].
- Option C results in [tex]\( g(x) = 2x^2 \)[/tex].
- Option D results in [tex]\( g(x) = \frac{1}{4}x^2 \)[/tex].

We see that none of these exactly fits with the given information of [tex]\( g \)[/tex]. Thus, [tex]\( g \)[/tex] cannot be uniquely determined from the given choices.