If [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], and [tex]\( y = 6 \)[/tex] when [tex]\( x = 72 \)[/tex], what is the value of [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex]?

A. [tex]\(\frac{1}{9}\)[/tex]
B. [tex]\(\frac{2}{3}\)[/tex]
C. 54
D. 96



Answer :

To solve the problem of finding the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 8, given that [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is 6 when [tex]\( x \)[/tex] is 72, we can follow these steps:

1. Understand the relationship: Since [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], we can express this relationship as [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is the constant of proportionality.

2. Determine the constant of proportionality [tex]\( k \)[/tex]:
We know that [tex]\( y = 6 \)[/tex] when [tex]\( x = 72 \)[/tex]. Using this information, we can solve for [tex]\( k \)[/tex].
[tex]\[ 6 = k \cdot 72 \][/tex]
[tex]\[ k = \frac{6}{72} = \frac{1}{12} \][/tex]

3. Use the constant of proportionality [tex]\( k \)[/tex] to find [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex]:
Now that we know [tex]\( k = \frac{1}{12} \)[/tex], we can use this constant to find [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex].
[tex]\[ y = k \cdot x = \frac{1}{12} \cdot 8 = \frac{8}{12} = \frac{2}{3} \][/tex]

Therefore, the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 8 is [tex]\( \frac{2}{3} \)[/tex].

So the correct answer is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]

Other Questions